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DEPENDENCE OF STRESS ON POISSON'S RATIO IN
PLANE ELASTICITY*

J, DUNDURS

Northwestern University, Evanston, Illinois

Abstract-The conditions in plane elasticity under which stress is independent ofPoisson's ratio are well known.
In the present note, the explicit dependence ofstress on Poisson's ratio is derived for the case when these conditions
are not met because of unbalanced forces on internal boundaries. The result shows that knowledge of stress in
two models with different Poisson's ratios is sufficient for the determination ofstress in a prototype ofany Poisson's
ratio. Extensions regarding body forces and dislocation, temperature and residual stresses are indicated.

INTRODUCTION

WITHIN the framework of linear theory, stress caused in an elastic and isotropic body by
given surface tractions can depend only on a dimensionless combination ofelastic constants,
such as Poisson's ratio. The dependence of stress on Poisson's ratio is a complicating factor
in both theory and experimental work, and occasional investigations have dealt with this
question. Among the more recent contributions are the papers by Knops [1] and Sternberg
and Muki [2]. However, it appears that an explicit dependence of stress on Poisson's ratio
can be derived only for plane elasticity.

Among the various propositions of plane elasticity, the Michell result [3] has played one
ofthe most prominent roles in applications. Ifa body is loaded by specified surface tractions
and there are no body forces, the theorem by Michell asserts that the stress in the body is
independent ofPoisson's ratio, provided either the body is singly connected, or the tractions
over each interior boundary give no net force. The encouragement this result has given to
work in photoelasticity is well known, but sometimes it is equally expedient in approximate
methods,

There are, of course, complications in experimental work when the stress depends on
Poisson's ratio because of unbalanced forces on internal boundaries, and at the same time
the model cannot be made ofa material with a Poisson's ratio equal to that ofthe prototype.
One method for dealing with this problem is due to Filon [4, 5]. His technique requires
that two experiments be performed; one with the given loading on the body, the other with
the body free of applied tractions, but dislocated in the sense of Volterra. To introduce
Volterra dislocations in a model is not easy, and one gets the impression that, generally,
it has been more convenient to take refuge behind the estimates of Filon and Bickley [6].
However, the specific examples used by Filon and Bickley to probe the effect of Poisson's
ratio involved essentially a single geometry, and their results, indicating but a mild depend
ence, are not universally true. Indeed, it is not difficult to invent counterexamples showing
that Poisson's ratio can have a sizeable effect. The simplest of these may be the body in the
outline of a bucket, loaded as shown in Fig. 1. If the vertical arms are made sufficiently
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FIG. 1

stiff, the strain in the thin horizontal bar will roughly be equal to the transverse strain in
the block. The stress in the bar is then vp, and it can range anywhere from 0 to p/2, depending
upon the particular material. The stress in the thin bar may be manipulated further by
changing the length of the bar, or the whole point can be driven to the extreme by notching
the bar, so that the largest stress in the body becomes kvp, with k ~ 1.

In spite of the fact that plane elasticity is a well developed field, it seems that an in
teresting and simple result regarding the dependence of stress on Poisson's ratio has been
overlooked in the past. The main purpose of this note is to show that, in a body subjected
to given surface tractions, stress can befoundfor any Poisson's ratio, provided it is knownfor
two specific values ofthis ratio. The proof is based on the properties of the stress field for a
point load in the elastic whole plane and on the Michell result. As the results remain valid
for concentrated forces, there are also immediate extensions to stresses caused by body
forces and inelastic strains.

The usefulness of the present results in experimental work would depend on the avail
ability of two materials with significantly different Poisson's ratios. In numerical methods,
however, there are no such difficulties, and stresses computed for the extremes of v = 0
and v = t will yield the answer for any Poisson's ratio.

DEPENDENCE OF STRESS ON POISSON'S RATIO IN PLANE ELASTICITY

It will be convenient in the subsequent discussion to reserve subscripts for the tensorial
indices (i,j = 1,2; and it is summed over a repeated index), and to use superscripts for labels.

The reasoning is based largely on three properties of the stress field for a concentrated
force in the elastic whole plane. In terms ofthe polar coordinates p and a, shown in Fig. 2, the
Airy stress function is in this case

P .
Vel) = 2n(x+ 1)[ -(x+ l)pa sm a+(x-1)p log p cos a],

where P is the magnitude ofthe applied force Pi. Denoting Poisson's ratio by v,

3-v
X=--

l+v

(1)

(2)
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FIG. 2

for plane stress,

x = 3-4v

for plane strain, and we have 1 ~ x ~ 3.
It may be observed that VOO is of the form

B(
.) _ xf(x l , x 2)+g(x l , X2)

Xl' X2 ,x - l'x+

Here f(xI' x 2) and g(x I' X2) are functions of position that do not contain x, or

of = og = o.
ax ax

1015

(3)

(4)

(5)

Functions that are of the form given by (4) will be called bilinear in x, or ofform B. Clearly,
all functions independent of x can be put in form B.

Denoting the stress derived from V = -11t prx sin rx by ai/xl' X2) and that from V =
11t P log Pcos rx by biixI' X2), the total stress in the whole elastic plane is

00 _ P
a ij - --1 {x[aij(xI,x2)+biixI,x2)]+aij(xI,x2)-biixI,X2)}' (6)

x+

The detailed nature of the six functions aij and bij in (6) is of no relevance, but it is important
for our purposes to observe the following:

(a) The stress au is bilinear in x.
(b) The tractions derived from aij give a net force of unit magnitude on all closed con

tours surrounding the point ofapplication of the force. Ofcourse, there is no net force from
aij on contours not encircling this point.

(c) The tractions from bij are self-equilibrated on all closed contours.

The boundary curves of the multiply connected body, shown in Fig. 3, will be denoted
by Co, el, e2

••• ek, . .. en, with CO reserved for the outer boundary. The arc-length sk,
measured along ek from some point on the curve, can be used as a parameter to specify
the position of a given point on ek

•

FIG. 3
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(8)

The body is subjected to specified surface tractions t~ on all e. It is expedient to set
the tractions proportional to a single scalar factor q which specifies the general intensity
of loading. Thus,

t7 = qF7(Sk), (7)

and a change in q amounts only to raising or lowering the level ofioading, while the tractions
remain similar.

The net force on ek is

P7 = fCk t7 dsk = qtk F7(Sk) ds
k = qp7·

If all p7 vanish, then according to the Michell result, the stress in the body is independent
of Poisson's ratio, and it can be put in form B. The object is to show, however, that the
stress in the body is bilinear in x even when some p7 do not vanish, and the stress depends
on Poisson's ratio.

FIG. 4

For that purpose take the elastic whole plane, sketch in the outline of the given body,
as shown in Fig. 4, and subject the infinite domain to the concentrated forces Pl, Pf, ...
P7, ... P7. These forces are computed from formula (8), and they are applied at arbitrary
points inside the outlines of e 1

, e2
, ••• ek

, ••• en. The particular point chosen inside, say,
ek does not matter, because P7 needs not be equipollent to the system of elemental forces
t7 dskacting on ek in the original problem. It also may be noted that p? is not applied to the
elastic whole plane. Using (6) and superposing, the stress in the infinite domain is then

(9)

Here a7j and b7j are the counterparts of aij and bij in (6); they are the contributions of the
individual forces P7.

The traction t i is computed from stress aij by the formula

(10)

where nj is the unit normal to the boundary directed out of the material. If we think of
stress ar} as existing in the given body, we can obtain from (10) the tractions (t7)",' that would
have to be applied to the boundaries Co, e1

, ••. ek
, • •. en of the given body in order to

achieve this state of stress. Denoting with G7/ and H7/ the tranctions on ek that are due to
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the individual terms piaL and p'bl j , respectively, in (9), we have

(t~)'X) = -q- ~ [x(G~I+H~I)+G~I_H~I]
I x+ 11~1 I I J I'
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(11)

If the stress in the body produced by the specified tractions t~ is a ij , we can change
a'(j to aij by subjecting the body, in addition to (t~)'X), to the tractions

(t~)R = t~-(t~)OO, (12)

The tractions (t~)R, applied to all Ck, may be called the residual loading of the body. Substi
tuting (7) and (11) into (12), the result is

(t~)R = +q I{X[F~- i (G~I+H~I)l+F~- i (G~I-H~I)l. (13)
x 1=1 J 1=1 J

On basis of property (c) for the stress in the elastic whole plane caused by a concentrated
force,

and, consequently, the two sets of tractions

n

Fk - " (G~I + H~I)
I ~ I I'

1= 1

n

F k
- " (G~I - H~I)

I L..J I I'

1= 1

(14)

(15)

(16)

individually give no net forces on the boundaries Co, C 1, ••• ek, ••• en, Therefore, if the
body is loaded by either the tractions (15) or (16), the stress in the body is independent of
Poisson's ratio in consequence of Michell's result. This allows us to conclude that the
stress a5, produced by the action of (t~)R on the boundaries, must be of the same form in x
as (13), or

a5 = -q-[xCij(X 1 ,x2 )+dij(X 1 ,X2 )].
x+l

Since the total stress in the body is

(17)

(18)

(19)

it follows finally from (9) and (17) that, regardless how a body is loaded by specified surface
tractions, the stress is bilinear in x, or

q
aij = -- [x$ij(X l' X2 ) + CPij(X l' X2 )].

x+l

It may be noted that (19) is valid also when the loading includes concentrated forces or
moments applied at the boundaries or interior points. Substituting for x and absorbing
constants that do not matter into the functions, (19) reduces for plane stress to

(20)
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and for plane strain to
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(21 )

(23)

STRESSES IN BODIES WITH DIFFERENT POISSON'S RATIOS

Suppose that we wish to compare stresses in two geometrically similar bodies subjected
to similar surface tractions, but having different Poisson's ratios. It is not interesting to
become involved in scale effects because of different sizes and, therefore, the bodies will be
taken as congruent. To distinguish between the two bodies we shaH use superscripts 1and 2.
The point of the derivation which led to (19) was that the functions <l>ij and ({Jjj are in
dependent of Poisson's ratio. Therefore. from (19)

ql
alj = Xl + 1[X l<l>,ixt, X2)+tpij:Xl' xz)], (22)

2

(J;j "'" -1,q 1[X2<1>ij(X1, X1,) + ((Jij(X l ,X2)],
X +

Also the expressions (20) and (21) would carryover in a similar fashion.
It is seen at a glance from (22) and (23) that the stress fields in the two bodies can never

be made the same by simply adjusting the level ofloading. However, the results also show
that, if the stress is known for two Poisson's ratios, the functions <l>ij and ({Jij can be computed
from (22) and (23). Therefore, the stress is then known for aU Poisson's ratios. Also, the
identical result can be claimed if the stress is known for both plane stress and strain in the
same material.

Finally it may be instructive to consider a prototype (superscript 0) and two models
(superscripts 1 and 2) with different Poisson's ratios. Ifwe make

then from (19)

1 Xl +1 0

q = xo+ tq •

2 x 2 +1 0
q = xo+ fq •

(24)

(25)

(26)

(27)

(28)

It is seen, therefore, that the stress at any point in the prototype can be obtained from the
stresses at the same points in the models by means of the linear inter- or extrapolation
shown in Figs. 5. If one limits himself to plane stress, it follows from (20) that the load
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parameters for the models can be kept the same as that for the prototype, and the linear
interpolation done versus the Poisson's ratio.

0';/

0';/: -7---------i
0';/ ---- I
qi' - I I

/ I I I
I I I
I I I

FIG. 5

EXTENSIONS

K

Results, similar to those for loading by surface tractions, also can be obtained for body
forces, dislocations and stresses caused by temperature changes or inelastic strains. In
the last three cases, it is understood that the boundaries of the body are free of external
forces, except for the necessary end-constraints in plane strain. The proof of these results
is not difficult, and it will be left as an exercise.

Body forces

If there are body forces in addition to possible prescribed surface tractions, the stress
is of the form

(29)

where again q is a factor specifying the intensity ofloading.

Volterra and singular dislocations

The stress, produced by dislocating a multiply connected body in the sense of Volterra,
is

(30)

where G is the shear modulus, and b specifies the magnitude of dislocation. It is seen from
(30) that the elastic constants enter the stress merely as a scale factor. Therefore, knowledge
of the stress field for one material is enough to find it for any other material. Equation (30)
also is true for the singular dislocations of the edge-type.

Temperature stresses

Denoting by oc the coefficient of thermal expansion, and by 't' a factor that specifies the
level of temperature from the reference state, the stress is of the form

(31)
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Here" = 0 for plane stress, and" = v for plane strain. Also in this case the elastic constants
appear only as a scale factor.

Residual stresses

Writing generalized Hooke's law for an elastic isotropic solid in the form

(p, q, r = 1,2,3), (32)

the term S~q is seen to represent the strain that elements of the material would suffer in the
absence of stress. Sometimes s~ is called the elastic strain and S~q the inelastic strain or
eigenstrain. The simplest example of eigenstrain is the strain caused by change in tempera
ture, for which S~q = rxTbpq . In martensitic transformations, to name another example,
S~q is nearly deviatoric. By necessity, S~q is symmetric but, generally, it is incompatible. As
the total strain Spq in (32) must be compatible, it is precisely the incompatibility of the
eigenstrains that gives rise to residual stresses in a body.

For plane deformations we must have S~3 = S~l = O. If (32) is specialized to plane
deformations, the result is

(i,j, k = 1,2). (33)

(34)

Here again" = 0 for plane stress, and" = v for plane strain. Finally, the stress can be shown
to be of the form

Goo
aij = --1 [e ;;/x1, x 2 )+ "S33<~ij(Xl'x 2 )],

x+

where eO specifies the intensity of the in-plane components of eigenstrain, or S? 1, S?2, S~2'
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Resume-Les conditions en elasticite plane dans lesquelles la tension est independante du coefficient de Poisson
sont bien connues. Dans la presente note, la dependance explicite de la tension sur Ie coefficient de Poisson derive
du cas oil ces conditions ne se presentent pas par suite de forces non equilibrees aux limites internes. Le resuItat
montre que la connaissance de la tension dans deux maquettes avec des coefficients de Poisson differents suffit pour
etablir la tension dans un prototype Ii coefficient de Poisson quelconque. Des resultats supplementaires relatifs
les forces du corps et la dislocation, la temperature et les tensions residuelles sont indiques.
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ZusammenflUl8Ullg-Die Bedingungen, unter denen die Spannung in ebenen Elastizitlitsproblemen unabhiingig
von der Querdehnungszahl ist, sind wohlbekannt. In dieser ArOOt wird die Abhiingigkeit der Spannung von der
Querdehnungszahl fUr den Fall abgeleitet, wenn diese Bedingungen verletzt sind, well die Vektorensummen der
an inneren Grenzen angreifenden Oberfliichenkriifte nicht verschwinden. Das Ergebnis zeigt, dass die Kenntnis
der Spannung in zwei Modellen mit verschiedenen Querdehnungszahlen daflir hinreichend ist, die Spannung bei
beliebiger Querdehnungszahl zu bestimmen. Erweiterungen fUr Massenkriifte, Versetzungen sowie Wiirme- und
Eigenspannungen werden angedeutet.

AOCTpaKT-B IIJIOCKOil: TeopHH ynpyrocTH xopomo H3BeCTHbI TaKHe ycnoBWI, no.n; BnHIDIHeM KOTOpbIX
HanpllX<:eHHe lIBITlieTCli He3aBHCHMbIM OT K034PcPH~eHTa IIyaccoHa. B HacTolimeil: 3aMeTKe BbIBOAHTCli B
lIBHOM BH.n;e JaBHCHMOCTb MeX<:AY HanpllX<:eHHeM H K034PcP~eHToM IIyaccoHa .n;ml cnY'lall, Kor.n;a 3TH
ycnoBHlI He CYmecTBylOT B cne.n;CTBHe HeypaBHoBemeHHblX CHn Ha BHyTpeHHHX KOHTypax. Pe3ynbTaT
yKa3yeT Ha TO, 'ITO 3HaHHe HanplilKeHHil: B .n;ByX Mo.n;enliX C pa3HbIMH K034PcPHIlHeHTaMH IIyaccoHa,
oKa3yeTcli .n;OCTaTOlfHbIM Mll onpe.n;eneHHlI Hanpllx<:eHHlI B onbITHOM o6pa3ue Cnro6blM K034PcPH~eHToM

IIyaccoHa. YKa3b1BaeTCli Ha paclllHpeHHlI TeMbl, KacalOmeil.clI BITHlIHHlI MaCCOBbIX CHn, .n;HcnOKaUHH,
TeMnepaTypbl H OCTaTO'lHblX HanpllX<:emtil..


